Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Sci Sports Exerc ; 56(3): 499-510, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38356164

RESUMO

PURPOSE: Oral contraceptives (OCs) are commonly used by female athletes, but their effects on skeletal muscle are still poorly understood. We investigated if physically trained females using second-generation OCs differed from nonusers of OCs in the recovery of muscle function and muscle damage markers after repeated resistance exercise sessions. METHODS: We recruited 20 trained second-generation OC users and 20 trained nonusers to perform three strenuous resistance exercise sessions. Before, and 3, 24, and 48 h after exercise, blood samples were collected, and participants were evaluated for muscle soreness, maximal isometric and isokinetic muscle strength, vertical jump height, Wingate power performance, leg press strength, and intermittent recovery capacity (yo-yo test). All participants were provided with an energy-macronutrient-balanced diet during the experimental period. RESULTS: After resistance exercise, maximal isometric and isokinetic muscle strength, rate of force development, vertical jump height, and Wingate peak and average power were reduced, whereas markers of muscle damage were increased in both groups (P < 0.05). OC users experienced a greater reduction in isokinetic strength 3, 24, and 48 h after exercise compared with nonusers of OCs (interaction: P < 0.05). No other interactions were observed. CONCLUSIONS: We demonstrate that measures of muscle strength recovery after three strenuous resistance exercise sessions are comparable between trained females using second-generation OCs and nonusers of OCs. However, group differences were observed for isolated dynamic (isokinetic) muscle strength, suggesting a marginal benefit of not using OCs when accelerated recovery is needed.


Assuntos
Anticoncepcionais Orais , Treinamento de Força , Humanos , Feminino , Músculo Esquelético/fisiologia , Mialgia , Exercício Físico/fisiologia , Força Muscular/fisiologia
2.
J Mech Behav Biomed Mater ; 71: 307-313, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28390303

RESUMO

In the present paper, first results of the influence of the degradation of biodegradable materials on the hardness of the bone are presented in detail. For this purpose, different materials (Mg, Ti and biopolymers) were implanted into the femora of growing rats and bone cross sections were examined for the micro-hardness (MH). The aim of the present paper was to examine the mechanical response of the bone areas surrounding the implant at defined sites and at specified periods after implantation. A special focus was set on Mg alloys. In earlier in-vitro and in-vivo studies, an accumulation of Magnesium in the vicinity of the implant was detected by using different techniques. Therefore, micro-hardness measurements were performed, and the mechanical strength of bone was correlated with the exchange of Magnesium and Calcium in Hydroxyapatite. After the operation and implantation, the micro-hardness values became temporarily lower, but after complete degradation of the implants, the values were identical with those of specimens containing no implants.


Assuntos
Osso e Ossos/fisiologia , Durapatita/análise , Magnésio/análise , Osseointegração , Próteses e Implantes , Ligas , Animais , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...